On a given PowerRelation
object pr
, check if e1
relates to e2
based on the given social ranking solution.
Usage
testRelation(powerRelation, e1)
powerRelation %:% e1
pr_e1 %>=dom% e2
pr_e1 %>dom% e2
pr_e1 %>=cumuldom% e2
pr_e1 %>cumuldom% e2
pr_e1 %>=cp% e2
pr_e1 %>cp% e2
pr_e1 %>=banz% e2
pr_e1 %>banz% e2
pr_e1 %>=cop% e2
pr_e1 %>cop% e2
pr_e1 %>=ks% e2
pr_e1 %>ks% e2
pr_e1 %>=lex% e2
pr_e1 %>lex% e2
pr_e1 %>=duallex% e2
pr_e1 %>duallex% e2
pr_e1 %>=L1% e2
pr_e1 %>L1% e2
pr_e1 %>=L2% e2
pr_e1 %>L2% e2
pr_e1 %>=LP% e2
pr_e1 %>LP% e2
pr_e1 %>=LPS% e2
pr_e1 %>LPS% e2
Arguments
- powerRelation
A
PowerRelation
object created byPowerRelation()
oras.PowerRelation()
- e1, e2
Elements in
powerRelation$elements
- pr_e1
PowerRelation
ande1
element, packed into a list usingpr %:% e1
Value
testRelation()
and %:%
returns list(powerRelation, e1)
.
Followed by a %>=comparison%
or %>comparison%
it returns TRUE
or FALSE
, depending on the relation between
e1
and e2
.
Details
The function testRelation
is somewhat only used to make the offered comparison operators in the package better discoverable.
testRelation(pr, e1)
is equivalent to pr %:% e1
and list(pr, e1)
. It should be used together with one of the
comparison operators listed in the usage section.
See also
Comparison function: dominates()
, cumulativelyDominates()
, cpMajorityComparison()
.
Score Functions: ordinalBanzhafScores()
, copelandScores()
, kramerSimpsonScores()
, lexcelScores()
.
Examples
pr <- as.PowerRelation("123 > 12 ~ 13 ~ 23 > 3 > 1 ~ 2 > {}")
# Dominance
stopifnot(pr %:% 1 %>=dom% 2)
# Strict dominance
stopifnot((pr %:% 1 %>dom% 2) == FALSE)
# Cumulative dominance
stopifnot(pr %:% 1 %>=cumuldom% 2)
# Strict cumulative dominance
stopifnot((pr %:% 1 %>cumuldom% 2) == FALSE)
# CP-Majority relation
stopifnot(pr %:% 1 %>=cp% 2)
# Strict CP-Majority relation
stopifnot((pr %:% 1 %>cp% 2) == FALSE)
# Ordinal banzhaf relation
stopifnot(pr %:% 1 %>=banz% 2)
# Strict ordinal banzhaf relation
# (meaning 1 had a strictly higher positive contribution than 2)
stopifnot((pr %:% 1 %>banz% 2) == FALSE)
# Copeland-like method
stopifnot(pr %:% 1 %>=cop% 2)
stopifnot(pr %:% 2 %>=cop% 1)
# Strict Copeland-like method
# (meaning pairwise winning minus pairwise losing comparison of
# 1 is strictly higher than of 2)
stopifnot((pr %:% 1 %>cop% 2) == FALSE)
stopifnot((pr %:% 2 %>cop% 1) == FALSE)
stopifnot(pr %:% 3 %>cop% 1)
# Kramer-Simpson-like method
stopifnot(pr %:% 1 %>=ks% 2)
stopifnot(pr %:% 2 %>=ks% 1)
# Strict Kramer-Simpson-like method
# (meaning ks-score of 1 is actually higher than 2)
stopifnot((pr %:% 2 %>ks% 1) == FALSE)
stopifnot((pr %:% 1 %>ks% 2) == FALSE)
stopifnot(pr %:% 3 %>ks% 1)
# Lexicographical and dual lexicographical excellence
stopifnot(pr %:% 3 %>=lex% 1)
stopifnot(pr %:% 3 %>=duallex% 1)
# Strict lexicographical and dual lexicographical excellence
# (meaning their lexicographical scores don't match)
stopifnot(pr %:% 3 %>lex% 1)
stopifnot(pr %:% 3 %>duallex% 1)
# L^(1) and L^(2)
stopifnot(pr %:% 1 %>=L1% 2)
stopifnot(pr %:% 1 %>=L2% 2)
# Strict L^(1) and L^(2)
stopifnot((pr %:% 1 %>L1% 2) == FALSE)
stopifnot(pr %:% 3 %>L1% 1)
stopifnot((pr %:% 1 %>L2% 2) == FALSE)
stopifnot(pr %:% 3 %>L2% 1)
# L^p and L^p*
stopifnot(pr %:% 1 %>=LP% 2)
stopifnot(pr %:% 1 %>=LPS% 2)
# Strict L^(1) and L^(2)
stopifnot((pr %:% 1 %>LP% 2) == FALSE)
stopifnot(pr %:% 3 %>LP% 1)
stopifnot((pr %:% 1 %>LPS% 2) == FALSE)
stopifnot(pr %:% 3 %>LPS% 1)