On a given PowerRelation object pr, check if e1 relates to e2 based on the given social ranking solution.
Usage
testRelation(powerRelation, e1)
powerRelation %:% e1
pr_e1 %>=dom% e2
pr_e1 %>dom% e2
pr_e1 %>=cumuldom% e2
pr_e1 %>cumuldom% e2
pr_e1 %>=cp% e2
pr_e1 %>cp% e2
pr_e1 %>=banz% e2
pr_e1 %>banz% e2
pr_e1 %>=cop% e2
pr_e1 %>cop% e2
pr_e1 %>=ks% e2
pr_e1 %>ks% e2
pr_e1 %>=lex% e2
pr_e1 %>lex% e2
pr_e1 %>=duallex% e2
pr_e1 %>duallex% e2
pr_e1 %>=L1% e2
pr_e1 %>L1% e2
pr_e1 %>=L2% e2
pr_e1 %>L2% e2
pr_e1 %>=LP% e2
pr_e1 %>LP% e2
pr_e1 %>=LPS% e2
pr_e1 %>LPS% e2Arguments
- powerRelation
A
PowerRelationobject created byPowerRelation()oras.PowerRelation()- e1, e2
Elements in
powerRelation$elements- pr_e1
PowerRelationande1element, packed into a list usingpr %:% e1
Value
testRelation() and %:% returns list(powerRelation, e1).
Followed by a %>=comparison% or %>comparison% it returns TRUE or FALSE, depending on the relation between
e1 and e2.
Details
The function testRelation is somewhat only used to make the offered comparison operators in the package better discoverable.
testRelation(pr, e1) is equivalent to pr %:% e1 and list(pr, e1). It should be used together with one of the
comparison operators listed in the usage section.
See also
Comparison function: dominates(), cumulativelyDominates(), cpMajorityComparison().
Score Functions: ordinalBanzhafScores(), copelandScores(), kramerSimpsonScores(), lexcelScores().
Examples
pr <- as.PowerRelation("123 > 12 ~ 13 ~ 23 > 3 > 1 ~ 2 > {}")
# Dominance
stopifnot(pr %:% 1 %>=dom% 2)
# Strict dominance
stopifnot((pr %:% 1 %>dom% 2) == FALSE)
# Cumulative dominance
stopifnot(pr %:% 1 %>=cumuldom% 2)
# Strict cumulative dominance
stopifnot((pr %:% 1 %>cumuldom% 2) == FALSE)
# CP-Majority relation
stopifnot(pr %:% 1 %>=cp% 2)
# Strict CP-Majority relation
stopifnot((pr %:% 1 %>cp% 2) == FALSE)
# Ordinal banzhaf relation
stopifnot(pr %:% 1 %>=banz% 2)
# Strict ordinal banzhaf relation
# (meaning 1 had a strictly higher positive contribution than 2)
stopifnot((pr %:% 1 %>banz% 2) == FALSE)
# Copeland-like method
stopifnot(pr %:% 1 %>=cop% 2)
stopifnot(pr %:% 2 %>=cop% 1)
# Strict Copeland-like method
# (meaning pairwise winning minus pairwise losing comparison of
# 1 is strictly higher than of 2)
stopifnot((pr %:% 1 %>cop% 2) == FALSE)
stopifnot((pr %:% 2 %>cop% 1) == FALSE)
stopifnot(pr %:% 3 %>cop% 1)
# Kramer-Simpson-like method
stopifnot(pr %:% 1 %>=ks% 2)
stopifnot(pr %:% 2 %>=ks% 1)
# Strict Kramer-Simpson-like method
# (meaning ks-score of 1 is actually higher than 2)
stopifnot((pr %:% 2 %>ks% 1) == FALSE)
stopifnot((pr %:% 1 %>ks% 2) == FALSE)
stopifnot(pr %:% 3 %>ks% 1)
# Lexicographical and dual lexicographical excellence
stopifnot(pr %:% 3 %>=lex% 1)
stopifnot(pr %:% 3 %>=duallex% 1)
# Strict lexicographical and dual lexicographical excellence
# (meaning their lexicographical scores don't match)
stopifnot(pr %:% 3 %>lex% 1)
stopifnot(pr %:% 3 %>duallex% 1)
# L^(1) and L^(2)
stopifnot(pr %:% 1 %>=L1% 2)
stopifnot(pr %:% 1 %>=L2% 2)
# Strict L^(1) and L^(2)
stopifnot((pr %:% 1 %>L1% 2) == FALSE)
stopifnot(pr %:% 3 %>L1% 1)
stopifnot((pr %:% 1 %>L2% 2) == FALSE)
stopifnot(pr %:% 3 %>L2% 1)
# L^p and L^p*
stopifnot(pr %:% 1 %>=LP% 2)
stopifnot(pr %:% 1 %>=LPS% 2)
# Strict L^(1) and L^(2)
stopifnot((pr %:% 1 %>LP% 2) == FALSE)
stopifnot(pr %:% 3 %>LP% 1)
stopifnot((pr %:% 1 %>LPS% 2) == FALSE)
stopifnot(pr %:% 3 %>LPS% 1)